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This paper considers the case of a one-dimensional piston moving outwards with a 
speed proportional to r' and driving a strong shock into a non-uniform ambient gas 
whose density is initially proportional to vk, k > 0 .  This problem is connected with 
that studied by Grundy & McLaughlin (1977), who effectively discussed the case 
u = 0. We discover further important uses of the Sedov similarity solutions and find kc, 
the upper limit to k for the shock path to be asymptotically similar to the piston path. 

1. Introduction 
In  a recent paper (Grundy & McLaughlin 1977), the authors investigated the 

unsteady expansion of a uniform source gas into a non-uniform ambient atmosphere, 
a problem which is equivalent to that of a one-dimensional piston moving outwards 
with constant speed into a non-uniform ambient gas. Assuming an asymptotically 
constant shock velocity, these authors obtained the large time solution by the method 
of matched expansions and found an upper limit to k for a successful match. For 
larger k the assumption on the shock velocity was reviewed. An expanded version of 
this work was given by McLaughlin (1975), who indicated how to study the problem 
of a one-dimensional piston moving outwards with speed A(r'/L)" into an ambient gas 
of initial density p$(r'/L)-k, where r' is the dimensional spatial co-ordinate, L is the 
initial piston radius, p g  is the initial density at r' = L and A > 0, a > 0 and k > 0 are 
constants. This is the problem that we discuss here and it is our aim to investigate the 
large time solution and thus establish kc, the upper limit on k for the asymptotic shock 

V'(r ' /L)  = Ab, (r'/L)" + . . . , velocity to be of the form 

and also to evaluate b,. 
We omit the matching details as they are essentially the same as those in Grundy & 

PIfcLaughlin (1977). The zeroth-order inner solution (valid near the shock) is examined 
using the similarity solutions of Sedov (1959, p. 146) and it soon becomes clear that 
there is an upper limit kc to k for a similarity solution to exist. As an illustration, we 
calculate kc as a function of cr and b, as a function of k for various values of a. 
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2. Equations, boundary conditions and similarity solution 

quantities, the unprimed variables, by 
The dimensional quantities, the primed variables, are related to the non-dimensional 

u' = Au, p' = p t p ,  p' = p$A2p, r' = rL, t' = L t / A ,  V' = A V ,  

where u, p and p are respectively the gas velocity, density and pressure and r, t and V 
are the radial co-ordinate, time and the shock velocity. 

The equations governing the motion of the gas are 

where y is the constant ratio of specific heats of the gas and v, the geometry index, 
takes the values 0, 1 and 2 respectively for plane, cylindrical and spherical symmetry. 

u = ra on dr/dt = ra, 

and on letting ah/V'-+O, where a6 is the sound speed of the undisturbed gas, the 
Rankine-Hugoniot shock relations become 

The boundary condition on the piston is 

(2.2) I u = 2 V / ( y +  1)) 

P = r-%+ l)/(y- 11, 
p = 2V2+/(y+ l), 

which apply on &/at = V .  

i.e. we let 

and we can construct asymptotic expansions of the solution to the boundary-value 
problem. There are, of course, difficulties which arise in the matching but these are 
similar to those in Grundy & McLaughlin (1977) and in the hypersonic small dis- 
turbance theory of Freeman (1965), Ellinwood (1967) and Stewartson & Thompson 
(1968, 1970). All we wish to say about the matching is that the results of Grundy & 
McLaughlin (1977) for k < v + 1 can be recovered immediately from our analysis by 
setting a = 0 but for k > v + 1 no immediate recovery can be made. Also, as in Grundy 
& McLaughlin (1977), matching the zeroth-order inner terms with the outer expansion 
(valid near the piston) gives the constant b,, matching to fmt order produces an 
eigenvalue problem for whilst b, cannot be determined by the asymptotic analysis 
alone. 

Before we attempt to calculate b,, however, we must establish the existence of a 
solution to the zeroth-order inner problem. We observe that this solution is, in a dif- 
ferent description, the similarity or progressing-wave solution of one-dimensional 
gasdynamics, e.g. see Courant & Friedrichs (1948, p. 419) or Sedov (1959, p. 146). 

We now assume that the shock path is asymptotically similar to the piston path, 

(2.3) V ( r )  = b,ra{l + b l r a +  ...I, Rep, c 0, 
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FIGURE 1. Integral curves in the phase plane of 2 and U .  
Arrows indicate the direction of increasing A. 

Following Sedov we let 

u = S(r/t) U(h) ,  a2 = S2(r/t)2Z(h), (2.4) 

where aa = y p / p  and h = rt-8 is the similarity variable with S = 1/( 1 - 01) > 1. 

tial equation in 2 and U :  
Equations (2.1) together with (2.4) eventually produce a single first-order differen- 

(22.5) 
dZ _ -  ZS( u, 2) 
dU - ( l - U ) Q ( U , Z ) ’  

x = { 2 ( U - S - l ) + ( y -  1) (a+ 1 )  U }  (1 - U)2+ (y-  1) U (  u-8-1)  (1  - U )  

Q = U(U-8-1)  (1 - V )  +2{(a+ 1)  U-K/S) ,  

with 

- Z{2(  u - 8-1) + K ( y  - l)/S}, 

K = (2 + S(k - 2 ) } / y .  

The strong shock is located in the phase plane of 2 and U at S, where from (2.2) and 
(2.4) 

2 = 2, = 2 y ( y -  I) /@+ 1)2, u = u, = 2 / ( y +  l), 

and the piston a t  C, where 
z=z,=o, U = U , = l .  

Figure 1 shows a typical phase-plane diagram. In  his thesis (McLaughlin 1975), 
the present writer discusses the case k > a+ 1, S > 1 in great detail and the only 
difference for k < cr+ 1 is that there is a family of integral curves leaving the node 
C perpendicular to the U axis. It is important to note here that G is a saddle point. 
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U 

FIGURE 2. The variation of k, with u for y = 5 and various values of a. 

The argument now used to establish kc is entirely similar to that used by Grundy & 
McLaughlin (1977). We can see that, for sufficiently small k, there is an integral curve 
of (2 .5)  joining C to S and along this curve A varies monotonically since the integral 
curve A joining the singular points F ,  C and D lies to  the left of S. As k increases, 
A moves to  the right until, a t  k = k,, it passes through S. Clearly for k > k, no solution 
curve exists and thus tc, is the upper limit for the assumption (2.3) to  be valid. The 
function kc must be evaluated numerically, e.g. see Grundy & McLaughlin (1977) or 
McLaughlin (1975), unless a = a* = (y  - i)/(y + 1) .  In  this special case A is the line 
U = 2 / ( y +  1 )  and hence 

k c =  k" = 2 { y ( g + l ) + ( y - l ) } / ( y + l ) .  

The variation of k, with g for various values of a for y = j is shown in figure 2. 

3. Zeroth-order inner solution and calculation of b, 
Having verified that a solution to the zeroth-order problem exists for k < kc, we can 

calculate b,. The coefficient b, can, in theory, be obtained from the similarity solution 
but, as there is a singularity at C in (2.5), it is far easier in practice t o  obtain it using the 
particle-path co-ordinate. 

Following Grundy & McLaughlin (1977) we introduce, a t  the expense of time t ,  $ 
and then 4, where 

a$/ar = prr, a$/at = -purr, 
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FIGURE 3. The variation of b, with k for CJ = 2, y = and various values ofa. 

The shock then lies on # = 1 and for r+co the piston lies on 

0 for k <  o+l, 
# = A = {  00 for k >cr+l. 

For the zeroth-order inner solution only we substitute 

and 

into (2.1) to obtain, for k =t= cr+ 1, 

(a + a-  k )  Ro Uo - (u + 1 - k) #(Bo Uo)’ + (V + 1 - k) RtUi = 0, 

(a+ 1 - k)RoUo#Uh-aRo U:+ Q(k- 2a) (7- 1)Po 
+-&(y- 1) (v+ 1 -k)@’A- Q(y+ 1 )  ((T+ 1 -k) RoPi = 0,  

P - RY [k(Y-1)+2~l / (~+l -k) ,  
0 -  0 4  

with equivalent equations when k = o + 1. 
The boundary conditions at  the shock are 

U0(1) = Po( l )  = R,(l) = 1 
and matching requires that 

2(Y + 1)- 1 b O U , + 1  as #-+#o. 

Obviously b, is obtained by integrating (3.1) numerically from 4 = 1, using (3.2), 
to # = q5* with the result 

We illustrate this by taking the case u = 2, y = $; the graphs of b, us. k for various 
values of a being shown in figure 3. 

b, = (Y + ~)/2U,(#o). 
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